Prelab Practice: Configurations of Resistors

Review the textbook on resistors in series and parallel:

- Phys 1402: Serway/Vuille: Sections. 18.2, 18.3; Quick Quiz 18.3, 18.4, 18.5, 18.6.
- Phys 2426: Serway/Jewett: Sections 28.2; Quick Quiz 28.3, 28.4.

1. In Figure 1, which resistors are connected in parallel and which resistors are connected in series? (20 Ω and 60 Ω are in parallel; 30 Ω , 15 Ω , and equivalent resistance of 20 Ω & 60 Ω are in series)

Figure 1. Set of resistors used for Question 1.

2. What is the equivalent resistance of the overall configuration on Picture 1? (60 Ω . The 20 Ω and 60 Ω form a parallel equivalent resistance of 15 Ω .)

3. In Figure 2, the ammeter reads 1.2 A, and voltmeter reads 3.6 V. If $R_1 = 2 \Omega$, what is emf of the battery? (6V)

Figure 2. Circuit used for Question 3.

4. In Figure 3, $R_1 = 2.1 \Omega$, $R_2 = 3.4 \Omega$, and $R_3 = 1.7 \Omega$. If the terminal voltage of the battery is 5.8 V, calculate the current through each resistor.

 $(I_1 = 2.8 \text{ A}, I_2 = 1.7 \text{ A}, I_3 = 3.4 \text{ A})$

Figure 3. Circuit used for Questions 4 and 5.

5. What is the reading of the ammeter in Figure 3? (7.9A)